Student Number:

Teacher:

St George Girls High School

Mathematics Extension 2 2023 Trial HSC Examination

		TOTAL	/100			
	for this section	Q16	/14			
	• Allow about 2 hour and 45 minutes		/15			
	Attempt Questions 11–16	015	/15			
	Section II – 90 marks (pages 7 –12)	014	/15			
		013	/15			
	• Allow about 15 minutes for this section	Q12	/16			
100	• Attempt Questions 1–10	Q11	/15			
Total marks:	- Section I – 10 marks (pages 3 – 6)	Q1-10	/10			
	 Start each questions in the booking Start each question in a new writing Show relevant mathematical reasons Marks may not be awarded for incompresented solutions, or where multiprovided 	ng booklet oning and/or omplete or po tiple solutions	calculations orly s are			
	For questions in Section II:					
	 For questions in Section I, use the Multiple-Choice answer sheet 					
	A reference sheet is provided	useu				
	 Write using black pen Calculators approved by NESA may be used 					
Instructions	• Working time – 3 hours					
General	• Reading time – 10 minutes					

%

BLANK PAGE

Section I

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section Use the multiple-choice answer sheet provided for Questions 1 to 10.

1. What is the value of
$$\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)e^{i\frac{\pi}{3}}$$
?

(A) $e^{i\frac{11\pi}{12}}$ (B) $\frac{1}{\sqrt{2}}e^{i\frac{-11\pi}{12}}$ (C) $e^{i\frac{\pi}{4}}$ (D) $e^{i\frac{-11\pi}{12}}$

2. Each pair of lines given below intersects at $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.

Which pair of lines are perpendicular?

(A)
$$\ell_1: r = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$$
 and $\ell_2: r = \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$
(B) $\ell_1: r = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and $\ell_2: r = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix}$
(C) $\ell_1: r = \begin{pmatrix} 0 \\ -3 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ -3 \end{pmatrix}$ and $\ell_2: r = \begin{pmatrix} -1 \\ -2 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$
(D) $\ell_1: r = \begin{pmatrix} 3 \\ -2 \\ 8 \end{pmatrix} + \lambda \begin{pmatrix} -2 \\ 4 \\ -5 \end{pmatrix}$ and $\ell_2: r = \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$

3. Consider this statement.

"If I don't make my bed then my mum will take my iPhone away from me."

Which of the following is the converse of the contrapositive of the above statement?

- (A) "If I don't make my bed then my mum will not take my iPhone away from me."
- (B) "If my mum takes my iPhone away from me then I won't make my bed"
- (C) "If I do make my bed then my mum will not take my iPhone away from me."
- (D) "If I do make my bed then my mum will take my iPhone away from me."
- 4. Vectors \boldsymbol{u} and \boldsymbol{v} have components $\begin{pmatrix} 0.6 \\ 0 \\ t \end{pmatrix}$ and $\begin{pmatrix} 3 \\ 0 \\ -5 \end{pmatrix}$ respectively. The following two statements are made about \boldsymbol{u} and \boldsymbol{v} :
 - (1) when t = -1, \boldsymbol{u} and \boldsymbol{v} are parallel.
 - (2) when t = -0.8, **u** is a unit vector.

Which of the following is true?

- (A) Neither statement is correct.
- (B) Only statement (1) is correct.
- (C) Only statement (2) is correct.
- (D) Both statements are correct.

5. Which expression is equal to $\int \frac{1}{\sqrt{-16x - 4x^2}} dx$?

(A)
$$\frac{1}{2} \sin^{-1}\left(\frac{x+2}{4}\right) + c$$

(B) $\frac{1}{2} \sin^{-1}\left(\frac{x-2}{4}\right) + c$

(C)
$$\frac{1}{4} \sin^{-1}\left(\frac{x+2}{2}\right) + c$$

(D)
$$\frac{1}{2}\sin^{-1}\left(\frac{x+2}{2}\right) + c$$

6. Evaluate $(1 + i)^{40} + (1 - i)^{40}$.

(A) 2²¹

- (B) 2²⁰
- (C) 2¹⁹
- (D) 2¹⁸
- 7. Using a suitable trigonometric substitution, $\int_{0}^{\frac{\pi}{3}} \cot^{3}x \sec^{2}x \, dx$ can be expressed in which of the following ways?

(A)
$$\int_{0}^{\sqrt{3}} u^{3} du$$

(B)
$$\int_{0}^{\frac{\pi}{3}} \frac{1}{u^{3}} du$$

(C)
$$\int_{0}^{\frac{1}{\sqrt{3}}} u^{-3} du$$

(D)
$$\int_{0}^{\sqrt{3}} \frac{1}{u^{3}} du$$

8. Which of the following statements is correct?

- (A) $\forall a, b \in \mathbb{R}$ $\sin a < \sin b \Rightarrow a < b$
- (B) $\forall a, b \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \quad \sin a < \sin b \Rightarrow a < b$
- (C) $\forall a, b \in \mathbb{R}$ $\cos a < \cos b \Rightarrow a < b$
- (D) $\forall a, b \in [0, \pi]$ $\cos a < \cos b \Rightarrow a < b$

9. The diagram shows the solution of an equation, where *C* is the centre of the circle.

Which of these could be the equation?

(A)
$$\operatorname{Arg}(z-\alpha) - \operatorname{Arg}(z-\beta) = 0$$

(B) Arg
$$(z - \alpha)$$
 - Arg $(z - \beta) = \frac{\pi}{2}$

(C) Arg
$$(z - \alpha)$$
 - Arg $(z - \beta) = \frac{\pi}{4}$

(D) Arg
$$(z - \beta)$$
 – Arg $(z - \alpha) = \frac{\pi}{4}$

10. Which diagram best shows the curve described by the position vector

$$r(t) = \sin(t) \underbrace{i}_{\sim} - \cos(t) \underbrace{j}_{\sim} \text{ for } \frac{\pi}{4} \le t \le \frac{5\pi}{4}?$$

END OF SECTION I

<u>Section II</u> 90 marks Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes for this section

In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a) Consider the complex numbers $z_1 = 5 + i$ and $z_2 = -2 + i$.

Find the value of
$$\frac{\overline{z_1}}{z_1 + z_2}$$
, giving your answer in the form $a + ib$. 2

(b) For the complex number
$$z = 3e^{i\frac{\pi}{6}}$$
, write \overline{z}^4 in the form $a + ib$. 2

(c) Find the exact value of
$$\int_{\sqrt{2}}^{\sqrt{3}} \frac{3x}{\sqrt{x^2+2}} dx.$$
 3

- (d) (i) Find the two square roots of 2i, giving your answers in the form x + iy, 2 where x and y are real numbers.
 - (ii) Hence, solve $2z^2 + 2\sqrt{2}z + 1 i = 0$. Give your answers in the form x + iy. 2
- (e) Consider the two vectors $u = 2\alpha i + (3 \alpha)k$ and v = 2i 2j + k, where α is a scalar.
 - (i) Find *p*, the vector projection of $u \atop_{\sim} onto v$.
 - (ii) Given that $3\left|\frac{u}{\omega}\right| = \sqrt{17}\left|\frac{p}{\omega}\right|$, find the value of α .

Marks

2

2

St George Girls High School Year 12 – Mathematics Extension 2 – 2023 Trial HSC Examination			Page 8
Ques	tion 1	2 (16 marks) Use a SEPARATE writing booklet.	Marks
(a)	Use n(n ²	mathematical induction to prove that for all positive odd integers n , $r^2 + 1$) is even.	3
(b)	The whe	polynomial $g(z) = z^4 + 2z^3 + 6z^2 + 8z + 8$ has roots $a + bi$ and $2ci$, re a, b and c are all real.	
	(i)	Find all the roots of $g(z)$.	3
	(ii)	Write $g(z)$ as a product of two real quadratic factors.	2
(c)	(i)	Find the values of <i>a</i> , <i>b</i> , and <i>c</i> such that:	3

$$\frac{2x}{(x-4)(x+2)^2} = \frac{a}{x-4} + \frac{b}{x+2} + \frac{c}{(x+2)^2}.$$

(ii) Hence find
$$\int \frac{x}{(x-4)(x+2)^2} dx$$
. 2

3

(d) Shade the region on the Argand diagram where the inequalities $|z - 2 - 2i| \le 2$ and $|\text{Im}(z - 2i)| \ge 1$ hold simultaneously.

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) (i) Find all solutions to the equation
$$z^5 = -1$$
. 3
Give your answers in modulus-argument form.
(ii) Hence prove that $\cos \frac{\pi}{5} + \cos \frac{3\pi}{5} = \frac{1}{2}$. 2

(b) Use integration by parts to find
$$\int xe^{-2x} dx$$
. 3

(c) Prove by contradiction that if *p* is an integer, then $p^2 + 6$ is not divisible by 4. 3

(d) The line *l* has equation
$$v = \begin{pmatrix} 0 \\ 3 \\ -5 \end{pmatrix} + \mu \begin{pmatrix} -1 \\ b \\ 2 \end{pmatrix}$$
, where μ is a parameter and *b* is a constant.

The points P and Q have coordinates (-1, 2, 3) and (-2, 4, 2) respectively.

(i) Find a vector equation of the line PQ.
[Leave your answer in the form
$$r = a + \lambda b$$
]

(ii) Find the value of *b* for which the acute angle between line *l* and the line PQ is $\cos^{-1}\frac{1}{6}$.

1

3

Quest	ion 14 (15 marks) Use a SEPARATE writing booklet.	Marks
(a)	Calculate the modulus and argument of the sum of the roots of the equation $(4 + 3i)z^2 - (3 - i)z - (4 + 2i) = 0$ in exact form.	3

(b) (i) If
$$t = \tan \frac{\theta}{2}$$
, show that $\frac{d\theta}{dt} = \frac{2}{1+t^2}$.

(ii) Hence evaluate
$$\int_0^{\frac{\pi}{2}} \frac{3}{8\cos\theta + 10} d\theta$$
. 3

Leave your answer correct to 3 significant figures.

(c) Consider the line *L* with position vector

$$\underset{\sim}{r} = \begin{pmatrix} 3\\ -2\\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\ -1\\ -1 \end{pmatrix}.$$

The sphere with equation $(x - 3)^2 + (y + 2)^2 + (z - 4)^2 = 18$ intersects the line *L* at the points A and B.

Find the equation of the sphere with diameter AB.

(d) Use mathematical induction to prove that $n! \ge 2^{n-1}$, $n \in \mathbb{Z}^+$. 3

Question 15 (15 marks) Use a SEPARATE writing booklet.

(a) Prove by induction that
$$T_n = 3(2^n) + 1$$
 for $n \ge 1$, given 3
 $T_1 = 7$ and $T_n = 2T_{n-1} - 1$ for $n \ge 2$.

(b) The vertices A, B and C of triangle ABC are represented in the Argand diagram by the complex numbers *a*, *b* and *c* respectively.

AC =
$$\sqrt{2}$$
 AB and \angle CAB = $\frac{n}{4}$.

(c) Using the substitution $x = 2 + 2\cos^2\theta$, calculate the value of

$$\int_2^3 \sqrt{\frac{x-2}{4-x}} dx \, .$$

(d) (i) Let $I_n = \int_0^{\frac{\pi}{2}} x^n \cos x \, dx$ for n = 0, 1, 2, 3, ...Show that $I_n = \left(\frac{\pi}{2}\right)^n - n(n-1)I_{n-2}$ for every integer $n \ge 2$. 3 (ii) Hence, show that $I_4 = \left(\frac{\pi}{2}\right)^4 - 12\left(\frac{\pi}{2}\right)^2 + 24$. 2

3

Page 11

Question 16 (14 marks) Use a SEPARATE writing booklet.

(a) (i) Prove that
$$\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$$
. 2

(ii) By choosing a suitable trigonometric substitution, determine the value of 3

$$\int_0^1 \frac{dx}{x + \sqrt{1 - x^2}} \, .$$

(b) The diagram shows a triangular pyramid with vertices O(0, 0, 0), P(8, 6, 0), Q(6, 8, 0) and R(x, y, z), where x, y and z are positive real numbers.

Given that $\angle RPO = \angle RQO = \frac{\pi}{3}$, $|\overrightarrow{PR}| = |\overrightarrow{QR}| = 10$ units, find the 4 coordinates of *R*.

(c) (i) Using the inequality $\frac{x+y}{2} \ge \sqrt{xy}$, show that

$$\left(\sqrt{a} + \sqrt{b} + \sqrt{c}\right)^2 \ge 3\left(\sqrt{ab} + \sqrt{ac} + \sqrt{bc}\right),$$

where *a*, *b* and *c* are positive numbers.

(ii) Hence, or otherwise, show that

$$(m^3p^3 + m^3r^3 + p^3r^3)^2 \ge m^3p^3r^3(m^3 + r^3 + p^3).$$

END OF EXAMINATION

2

3

BLANK PAGE

BLANK PAGE

SGGHS 2023 Mathematics Extension 2 Trial HSC Examination SUGGESTED SOLUTIONS

Section 1

Multiple Choice Answer Key

Question	Answer
1	D
2	А
3	С
4	D
5	D
6	A
7	D
8	В
9	C
10	С

Section I $3\pi_{i}$ $T_{j}i$ $(3\pi_{i} + T_{j})i$ 1. $e^{4} \times e^{2} = e^{3\pi_{i}i}$ $= e^{-\frac{1}{1}\pi_{i}i}$ $= e^{-\frac{1}{1}\pi_{i}i}$

D

Α

С

D

$$A: \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$$
$$= -2 + 2 + 0$$
$$= 0 \qquad \text{so A}$$

3. The contrapositive of the statement is:

'If my mum does not take the iPhone away from me, then I will make my bed.' Hence, the **converse** of the contrapositive is:

'If I do make my bed, then my mum will not take the iPhone away from me.'

4.
$$u = \begin{pmatrix} 0 & -6 \\ 0 & + \end{pmatrix}$$
 $V = \begin{pmatrix} 3 \\ -5 \\ -5 \end{pmatrix}$
when $t = -i$ $u = \begin{pmatrix} 0 & -6 \\ -i \\ -i \end{pmatrix}$
 $= \begin{pmatrix} 3 \\ -5 \\ -i \\ -i \end{pmatrix} = \begin{pmatrix} 3 \\ -5 \\ -5 \end{pmatrix}$ $\therefore (1)$ true
when $t = -0.8$ $I = \begin{pmatrix} 0 & -6 \\ -0.8 \end{pmatrix}$
 $|u| = \sqrt{(0.6)^2 + (0.8)^2} = 1$ \therefore unit vetor $\therefore (2)$ true
 \therefore Both statements are true.

5.
$$\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1} \frac{f(x)}{a} + c$$
$$\int \frac{1}{\sqrt{-16x - 4x^2}} dx = \int \frac{1}{2\sqrt{-4x - x^2}} dx$$
$$= \int \frac{1}{2\sqrt{4 - 4} - 4x - x^2} dx$$
$$= \int \frac{1}{2\sqrt{2^2 - (4 + 4x + x^2)}} dx$$
$$= \int \frac{1}{2\sqrt{2^2 - (x + 2)^2}} dx$$
$$= \frac{1}{2} \sin^{-1} \left(\frac{x + 2}{2}\right) + c$$
D

$$\begin{aligned} 6. \qquad & z = 1 + i. \, z = \sqrt{2} \left(\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right) = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \\ & \bar{z} = 1 - i = \sqrt{2} \left(\cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right). \\ \text{Using de Moivre's theorem } z^{40} = 2^{20} \text{cis}(10\pi), \\ & (\bar{z})^{40} = 2^{20} \text{cis}(-10\pi). \\ & z^{40} + (\bar{z})^{40} = z^{40} + \overline{(z^{40})} \\ & = 2 \operatorname{Re}(z^{40}) = 2^{21} \cos(10\pi). \\ & \vdots (1 + i)^{40} + (1 - i)^{40} = 2^{21} \cos(10\pi). \\ & = 2^{21} \end{aligned}$$

A

7.
$$\int_{0}^{\frac{\pi}{3}} (\operatorname{of}^{3} x \operatorname{sec}^{2} x \, dx)$$

$$= \int_{0}^{\frac{\pi}{3}} \frac{1}{+\operatorname{an}^{3} x} \operatorname{sec}^{2} x \, dx$$

$$= \int_{0}^{\frac{\pi}{3}} \frac{1}{+\operatorname{an}^{3} x} \operatorname{sec}^{2} x \, dx$$

$$= \int_{0}^{\frac{\pi}{3}} \frac{1}{\operatorname{u}^{3}} \, du$$

$$= \int_{0}^{\frac{\pi}{3}} \frac{1}{\operatorname{u}^{3}} \, du$$

$$D$$

В

8. The correct answer must be an increasing function in the whole domain, which only occurs for B.

z lies on the circumference of a circle, radii from α and β meet at the centre at $\frac{\pi}{2}$ radians, this means the angle at z must be $\frac{\pi}{4}$ radians as the angle at circumference is half the angle at the when subtended by the same arc.

 $z - \alpha$ represents the vector from α to z.

 $z - \beta$ represents the vector from β to z.

 $z - \beta$ represents the vector from β to z. Using the exterior angle of a triangle, we can see that the angle at $z = Arg(z - \alpha) - Arg(z - \beta)$. C

10.
$$r\left(\frac{\pi}{4}\right) = \sin\frac{\pi}{4} \times i - \cos\frac{\pi}{4} \times j = \frac{1}{\sqrt{2}}i - \frac{1}{\sqrt{2}}j = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$$
$$r\left(\frac{5\pi}{4}\right) = \sin\frac{5\pi}{4} \times i - \cos\frac{5\pi}{4} \times j = -\frac{1}{\sqrt{2}}i - \left(-\frac{1}{\sqrt{2}}\right)j = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$

Also passes through:

$$r_{\sim}\left(\frac{\pi}{2}\right) = \sin\frac{\pi}{2} \times \underbrace{i}_{\sim} - \cos\frac{\pi}{2} \times \underbrace{j}_{\sim} = \underbrace{i}_{\sim} = (1, 0), \text{ so C.}$$

MATHEMATICS EXTENSION 2 – QUESTION //			
MARKS	MARKER'S COMMENTS		
	This part was		
	very well done		
	.		
í	(2)		
1			
1/2			
1/			
12			

MATHEMATICS EXTENSION 2 – QUESTION /		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
c) Let $I = \int \frac{3}{3x} dx$		
$\sqrt{2}$ $\sqrt{x^2+2}$		Overall this
$= 3 \int \frac{3}{2x} dx$		question was
2) 12 12+2		done well.
Let $u = x^2$		
$\frac{du}{du} = 2x$		
$dx_{du} = 2x dx$		
when $x = \sqrt{3}$, $u = 3$		
$x = \sqrt{2}$ $u = 2$		
$\therefore I = \frac{3}{2} \int_{a}^{3} \frac{du}{\sqrt{u+2}} = \frac{1}{2}$	(
$= \frac{3}{2} \int_{2}^{3} (4+2)^{-\frac{1}{2}} d4$		
$= \frac{3}{2} \left[2(u+2)^{\frac{1}{2}} \right]_{2}^{3}$	- (
$= 3((3+2 - \sqrt{2+2}))$		
= 3 (15 - 14)		
$= 3\sqrt{5} - 3 \times 2$		3
= 355 -6		
Alternative method.		
3		
$\frac{1}{2} = \frac{3}{2} \int \frac{2x}{\sqrt{x^2+2}} dx$		
$= \frac{3}{2} \left(\sqrt{3} 2x \left(x^{2} + 2 \right)^{-\frac{1}{2}} dx \right)$		
2 /12		
$= \frac{3}{2} \left[\frac{(x^2+2)^2}{(x^2+2)^2} \right]^{13}$	- 1	
$=3 \int 2\sqrt{x^{2}+2} \int \sqrt{3}$		
$= 3 \left[\sqrt{(5)^{2} + 2} - \sqrt{(2)^{2} + 2} \right]$		
= 3 (15 - 14)		
= 3 \5 - 6	2	

MATHEMATICS EXTENSION 2 – QUESTION			
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS	
d) i) Let $(a+ib)^2 = 2i$		This part was	
$a^2 - b^2 + 2abi = 2i$		well done.	
Equating parts			
$a^2-b^2=0$ ()	1		
$from (2) b = \frac{1}{a} s J b in (1)$			
$a^2 - \left(\frac{i}{2}\right)^2 = 0$			
$a^4 - 1 = 0$			
$(a^2 - 1)(a^2 + 1) = 0$			
but a ² = 1 since a is real			
$a = \pm 1$			
when a=1, b=1			
a = -(b = -1)		(2)	
$\bullet \sqrt{21} = \pm (1+2)$			
$Z = -2\sqrt{2} \pm \sqrt{(2\sqrt{2})^2 - 4 \times 2 \times (1-i)}$			
2×2			
$= -2\sqrt{2} \pm \sqrt{8 - 8 + 8i}$			
4			
$= -2.12 \pm \sqrt{81}$			
-25+25i			
4			
$=-\sqrt{2}\pm\sqrt{2i}$			
2			
$= -\sqrt{2} \pm (1+i)$ from (i)	1/2		
$= -12 + 1 + 1 = 0r - \frac{12 - 1 - 2}{2}$	$\left \right\rangle$		
	< 1/2	(9)	
$\frac{-2}{2} = \frac{1-12}{2} + \frac{1}{2} \text{ or } 2 = -\frac{12-1}{2} - \frac{1}{2}$	\cup	(2)	

MATHEMATICS EXTENSION 2 – QUESTION ()			
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS	
e) i) $u = 2ai + (3-a)k$			
$v = 2\dot{i} - 2\dot{j} + k$			
Now p = proj u			
$= \frac{u \cdot v}{2} \times \frac{v}{2}$			
$\frac{ v ^2}{2\alpha x^2 + (3-\alpha)x + (\frac{2}{\alpha})}$	2 MK	tor correct U·V	
$= \frac{2}{(\sqrt{2^2 + 2^2 + 1^2})^2} \times \begin{pmatrix} -2 \\ 1 \end{pmatrix}$			
$= \frac{4\alpha + 3 - \alpha}{2} \begin{pmatrix} 2 \\ -2 \end{pmatrix}$	12mk	for finding V ²	
++++ (1)		Many students	
$\frac{-3\alpha + 3}{9} \left(\frac{-2}{1} \right)$		dia not square [V	
$= \frac{3(\alpha+1)}{9} \begin{pmatrix} 2\\ -2\\ 1 \end{pmatrix}$			
$= \frac{\alpha + 1}{3} \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$	mk	2	
ii) $ u = \sqrt{(2\alpha)^2 + (3-\alpha)^2}$ = $\sqrt{4\alpha^2 + 9 - 6\alpha + \alpha^2}$			
$= \sqrt{5\alpha^2 - 6\alpha + 9}$			
and $ p = \frac{\alpha+1}{2} \times \sqrt{2^2 + (-2)^2 + (-2)^2} + (-2)^2$	- 2ml	Many students	
		did not multiply	
$\frac{2}{3} \times 14 + 1 + 1$		d+1 and	
$= \alpha + 1 \times \sqrt{9}$		therefore have	
$= \frac{3}{2 \times 3} \sqrt{17} \left \frac{p}{2} \right $		made the question	
$= \alpha + 1 (\alpha + 1)$		easiev.	
$3\sqrt{5a^2-6a+9} = \sqrt{17}$			

MATHEMATICS EXTENSION 2 – QUESTION			
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS	
Squaring both sides			
$9(5\alpha^2 - 6\alpha + 9) = 17(\alpha + 1)^2$			
$45a^2 - 54a + 81 = 17(a^2 + 2a + 1) - 17(a^2 + 2a + 1)$	- 1/2	mark	
$= 17 \alpha^{2} + 34 \alpha + 17$			
$28a^2 - 88a + 64 = 0$			
$7\alpha^{2} - 22\alpha + 16 = 0$			
$(7\alpha-8)(\alpha-2)=0$	Im	ark	
$d = 2 \text{ or } \frac{8}{2}$			
1			
		2	

MATHEMATICS EXTENSION 2 – QUESTION 12			
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS	
Step1 - Prove true for n=1			
$\chi(x^{2}+1) \qquad x \to n \qquad n \qquad (n^{2}+1)$			
n = 1			
$= 1(1^{2}+1)$			
= 2 which is even.	(2)	Correctly proves the base case	
<u>Step2</u> - Assume true for n=k where k is odd			
is Assume $k(k^2+1) = 2M$ where $M \in \mathbb{Z}$	(1/2)	Correctly stakes the	
		assumption	
step3 - Prove true for n=12+2			
$(k+2)[(k+2)^2+1]$ is even $k \in odd$ integ	er		
$(k+2)[(k+2)^2+1]$	(1/2)	Correctly states what	
$= (k+2)(k^2+4k+4+1)$		is being proved	
$= (k+2)(k^2+4k+5)$			
$= k^3 + 4k^2 + 5k + 2k^2 + 8k + 10$			
$= k^{3} + 6k^{2} + 13k + 10$			
= k + k + 6k + 12k + 10			
= k(k+1) + 2(3k+6k+5)			
$= 2M + 2(3k^2 + 6k + 5) $ by the assumption		Connectly uses the	
$= \partial (M + 3k^{2} + 6k + 5) \qquad M \in \mathbb{Z}, k \text{ is a positive odd}$		assumption in the proof	
which is even	(1/2)	Correctly completes	
: true for n=k+2, if true for n=k		proof and includes	
		conclusion-	
<u>Step 4</u>			
By the Principal of Mathematical Induction			
it is true for all positive odd integers n.			

MATHEMATICS EXTENSION 2 – QUESTION			
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS	
OR			
step3 Prove true for n=2k+1			
i Prove (2k+1) [(2k+1) ² +1] is even			
$(2k+1)[(2k+1)^{2}+1]$			
$= (2k+1)(4k^{2}+4k+1+1)$			
$= 8k^{3} + 8k^{2} + 4k + 4k^{2} + 4k + 2$			
$= 8k^{3} + 12k^{2} + 8k + 2 \qquad k(k^{2} + 1) = 2M$ $b^{3} + b = 2M$			
$= 8(2M - k) + 12k^{2} + 8k + 2 \qquad k^{3} = 2M - k$			
$= 16M - 8k + 12k^{2} + 8k + 2$			
$= 16M + 12k^{2} + 2$			
$= 2 \left(8M + 6k^{2} + 1 \right) $ which is even M6Z b is an odd positive in the positive positive in the positive positi			
ctc ···			
	_		
	-		

MATHEMATICS EXTENSION 2 – QUESTION 12		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
b)(i) $g(z) = z^4 + 2z^3 + 6z^3 + 8z + 8$ $a, b, c \in \mathbb{R}$		
If a+bi is a root then a-bi is a root.		
If dci is a root then -dci is a root.		
This is because the roots occur in conjugate poirs when the coefficients		
are real.		
$\alpha + \beta + \gamma + \delta = -\frac{b}{\alpha}$		
a+ib+a-ib+aci-aci=-2	6	get all conjugate pairs
20 = -2		and correctly evaluates
a. = -1		a = -1
$\alpha \beta \gamma \delta = \frac{\theta}{\alpha}$		
(a+ib)(a-ib) (dci)(-dci)= 8	2	correct expression for
$4c^{2}(a^{2}+b^{2})=8$ (1)		product of roots
abr + abr + bre + are	$\overline{7}$	correct expression for
(a+ib)(a-ib)(aci) + (a+ib)(a-ib)(-2ci) + (a-ib)(aci)(-2ci) + (a+ib)(2ci)(-2ci) = -8		either sum of the
$\partial ci(a^{2}+b^{2}) - \partial ci(a^{2}+b^{2}) + 4c^{2}(a-ib) + 4c^{2}(a+ib) = -8$		roots two at a time or
$4ac^{2} - 4bc^{2}i + 4ac^{2} + 4bc^{2}i = -8$		three at a time.
8 a c ² = -8		
$ac^2 = -1$		
$a = -1$.: $(-1)c^{2} = -1$		
C ² =1		
c=±1	2	Correctly evaluates
: From (1) $4c^{2}(a^{3}+b^{2})=8$		c= ±1
$4c^{2}((-1)^{2}+b^{2})=8$		
$c^{2}(1+b^{2})=2$		
For $c=\pm 1$ $(\pm 1)^{2}(1+b^{2})=2$		
$1+b^2=2$		
b [*] = 1		Correctly evaluates
b=±1	(2)	6= ± 1
Now roots are a thi the thi		
$-1\pm i$, $\pm 2i$ (i , $-1+i$, $-1-i$, $2i$, $-2i$)	4	e 1/2 mark lost if

roots are not written

MATHEMATICS EXTENSION 2 – QUESTION		
	MARKS	MARKER'S COMMENTS
(0)		
(a+ib)(a-ib)+(a+ib)(-2ci)+(aci)(a+ib)+(a-ib)(2ci)+(a-ib)(-2ci)+(2ci)(-2ci)(-2ci)+(2ci)(-	2ci)=6	
$a^{2}+b^{2}-2aci+2bc+2aci-2bc+2aci+2bc-2aci-2bc+4c^{2}=6$		
$a^{2}+b^{2}+4c^{2}=6$		
$(-1)^2 + b^2 + 4(\pm 1)^2 = 6$		
$1 + b^{2} + 4 = 6$		
$b^2 = 1$ Note if you got $b = \pm \sqrt{3}$, $c = \pm \sqrt{2}$		
b=±1 These solutions do not give zeros when substituted in.		
(ii) $g(z) = \left[z - (-1+i)\right] \left[z - (-1-i)\right] (z - 2i)(z + 3i)$		
= (2+1-i)(2+1+i)(2-2i)(2+2i)		
$= \left[(\underline{z}+1)-\dot{u} \right] \left[(\underline{z}+1)+\dot{u} \right] \left(\underline{z}^{2}+4 \right)$		
$= \left[(2^{+1})^{2} + 1 \right] (2^{2} + 4)$		
$= (2^{2}+22+2)(2^{2}+4)$		
NOTE !		
$a^{2}+b^{2}+4c^{2}=6$		
$1 + 3 + 4c^2 = 6$		
40 ² =2		
$C^2 = \frac{1}{2}$		
$c = \frac{1}{2} c_{2}$		
$P(\sqrt{3}i) = (\sqrt{2}i)^{4} + 2(\sqrt{3}i)^{3} + 6(\sqrt{2}i)^{2} + 8(\sqrt{2}i) + 8$		
±0.		
$P(2i) = (2i)^{4} + 2(2i)^{3} + 6(2i)^{2} + 8(2i) + 8$		
= 16 - 166 - 24 + 166 + 8		
=0		

MATHEMATICS EXTENSION 2 – QUESTION 12		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
$\frac{c}{(x-4)(x+2)^2} = \frac{a}{x-4} + \frac{b}{x+2} + \frac{c}{(x+2)^2}$		
$2x = \alpha (x+2)^{2} + b(x-4)(x+2) + c(x-4)$	() mart	correct equation
Sub in $x = -2$		
-4 = -6c		
$c = \frac{2}{3}$	Imore	to find one of the
Sub in oc=4		values
8 = 36a		
$a = \frac{2}{9}$		
sub in x=0		
0 = 4a - 8b - 4c		
$0 = 4/\frac{2}{9} - 8b - 4(\frac{2}{3})$		
0 = 8 - 72b - 24		
72h = -16		
$h = -\frac{2}{2}$		
0- g		
$\therefore a = \frac{2}{9}, b = -\frac{2}{9}, c = \frac{2}{3}$	() mark	find all correct values
(ii) $\int \frac{x}{(x-4)(x+2)^2} dx = \frac{1}{2} \int \frac{2}{(x-4)(x+2)^2} dx$	() mark	to establish correct
$= \frac{1}{2} \int \frac{2}{9(x-4)} dx - \frac{1}{2} \int \frac{2}{9(x+2)} dx + \frac{1}{2} \int \frac{2}{3(x+2)^2} dx$		integral to enable use of (i)
$=\frac{1}{9}\int \frac{1}{x-y} dx - \frac{1}{9}\int \frac{1}{x+2} dx + \frac{1}{3}\int (x+2)^{-2} dx$		
$= \frac{1}{9} \ln x-4 - \frac{1}{9} \ln x+2 + \frac{1}{3} \left(\frac{x+2}{-1}\right)^{-1} + C$		
1. x-4		Correct answer
$= \frac{1}{9} \ln \left \frac{1}{x+2} \right ^{-1} = \frac{1}{3(x+3)} + C$		NOTE: Some half
		marks awarded for a
		minor error within
		WOrking.

MATHEMATICS EXTENSION 2 – QUESTION		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
(i) МЕТНОО 2		
$\frac{\partial x}{(x+1)(x+2)^2} = \frac{a}{x-1} + \frac{b}{x+2} + \frac{c}{(x+2)^2}$		
$\frac{(x-4)(x+2)}{2x} = \alpha (x+2)^2 + b(x-4)(x+2) + c(x-4)$		
$\partial x = ax^2 + 4ax + 4a + bx^2 - 2bx - 8b + cx - 4c$		
$0x^{2} + 3x + 0 = (a+b)x^{2} + (4a-2b+c)x + 4a - 8b - 4c$		
By equating coefficients		
a+b=0 $4a-2b+c=2$ $4a-8b-4c=0$		
$b=-\alpha \qquad 4\alpha+2\alpha+c=2 \qquad \alpha-2b-c=0$		
6a+c=2 $a+2a-c=0$ sub $3a=c$		
6a + 3a = 2		
7u - a		
··· <i>w</i> - 7, <i>b</i> - 7, <i>b</i> - 3		

MATHEMATICS EXTENSION 2 – QUESTION 12		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
d)		
$ z - (z + 2i) \leq 2$ Circle centre $(z, 2)$ radius	2	
<u> </u>		
5		
4		
	1 mark	correct circle
2		
	() mark	one <u>correct line + shadin</u>
-2 -) 1 2 3 4	1 mar	k Correct graph
-2		
$\left T_{m}(z-\partial i) \right \geq l$		
$ x+iy-\partial i \ge 1$		
$ x+(y-2)i \ge 1$		
$ y-z \ge 1$		
$y - 2 \neq 1 \text{or} -(y - 2) \geq 1$		
<u>y≥3</u> y-24-1		
y ≤ 1		

MATHEMATICS EXTENSION 2 – QUESTION 13		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
۵)		
Let $z = r(\cos\theta + i \sin\theta)$ for $-\pi < \theta \le \pi$		
Now z ^s = r ^s (cos 0 + i sin 0) ^s		
$= c^{5} cis 50$		
but $z^5 = -1$		
$z^{5} = l(cis\pi)$		
$\therefore r^{5} cis 5\theta = cis \pi$		
$r^{5}=1$, $5\theta=\pi+2k$, $k\in\mathbb{Z}$		
$\Theta = \frac{\pi}{5} + \frac{2\pi}{5} k$		
$= \frac{\pi(1+2k)}{2k}$		
$-\pi < \frac{\pi}{5} (H2k)^{4}$	41	
-5 < 1+2K<5		
$-6 < 2k \leq 4$		
$- > < K \leq 2$		
Z = CIS II (FZR)		
when $k=0$ $z = cis \pi$		
$k=1, z=c_{1}s^{3\pi}$		
$k=2, z=c_{1}s_{5}\overline{x}=c_{1}s_{7}$	Many	students did not leav
K=-1, $Z = C(S(-T))$	e solution	as a principle argume
$k = -2, z = c_{1}s_{1}(-\frac{3\pi}{3\pi})$	Morks we	re still awarded but
: solutions are: 5'	rememb	er to leave roots in
$z = \alpha s - \frac{3\pi}{5}$, $\dot{c} s - \frac{\pi}{5}$, -1 , $\dot{c} s \frac{\pi}{5}$, $\dot{c} s \frac{3\pi}{5}$	2 +	hat form
Alleranting Mathed	3k -	Correct solutions
Solutions are evenly spored around	2 mk-	Bracert splutions and
a mart arcale by 277 -tachag at T	0r -	4 " " option
21 214- 2 5 5	1 mk=	-l as a solution
z_3 z_4 z_5 z_7 z_8 z_8 z_8 z_8 z_8 z_8	CIS 71	T is 971
2^{n} 2_{π} but $c(s m = r) = 3m$	and	$s_{1} = c_{1} = \frac{T}{c_{1}}$
z_{+} $z_{-} = c_{1}s - 3\pi c_{1}s - 1$	CIST	$c_{1S}\pi$, $c_{0S}\pi$
51 51		5/ 5

•

MATHEMATICS EXTENSION 2 – QUESTION 3		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
a) ii)		
Sum of the roots = $-\frac{b}{a}$		-
		-
$\cos \pi + i\sin \pi + \cos \pi + i\sin \pi + \cos 3\pi + i\sin 3\pi + i\sin 3\pi + \cos 3\pi + i\sin 3\pi + \sin 3$	IMK-	To show the sum of all the
Post in the second seco	1/2 arks	roots and that they equal to
$\frac{\cos \pi + 1 \sin \pi + \cos \pi - 1 \sin \pi + \cos \pi + \cos \pi + 1 \sin \pi + \cos \pi - 1 = 0}{5}$	12 MR	include this step
$2\cos \pi + 2\cos 3\pi = 1$	1/2 mk	- if previous steps
$\frac{5}{2(\cos\frac{\pi}{5} + \cos\frac{3\pi}{2}) = 1}$		are included and
$\frac{1}{5} \cos \frac{\pi}{5} + \cos \frac{3\pi}{5} = \frac{1}{2}$		correct.
NB: IT is a snow question,		
steps in their working, particularly term	ſ	
that are cancelled out.		
b) Using integration by parts:		This part was
$\int uv dx = uv - \int vu dx$		very well done.
$\int de dt = 2 t$	[
$u' = 1$ $v = -\frac{1}{2}e^{-2x}$		
$\int x e^{-2x} dx = x \times (-\frac{1}{2} e^{-2x}) - (-\frac{1}{2} e^{-2x} \times 1) dx$)	
	{	
$= -\frac{1}{2} x e^{-\frac{1}{2}} + \frac{1}{2} \int e^{-\frac{1}{2}} dx$)	
$= -\frac{1}{2} x e^{-2x} + \frac{1}{2} x - \frac{1}{2} e^{-2x} + C$		
$= -\frac{1}{2} \times e^{-2x} - \frac{1}{2} e^{-2x} + ($		
$= -\frac{e^{-2x}}{2} \left(x + \frac{1}{2} \right) + c$)	3

MATHEMATICS EXTENSION 2 - QUESTIONSUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** c) We assume: If p is an integer, then 12+6 is 1/2 - mark for the divisible by 4. assumption/ negation) 5 So let $p^2 + 6 = 4M$ — -(* where M is an integer Case 1: If p is even then p=2k where k is an integer From (*) $LHS = (2k)^{2} + 6$ $= 4k^2 + 6$ $= 4k^2 + 4 + 2$ $= 4(\kappa^{2}+1)+2$ which is not divisible by 4 . a contradiction from the assumption that, p²+b « divisible by 4. Case 2: If p is odd the p=2k+1 From (A) $LHS = (2k+i)^{2} + 6$ $= 4k^2 + 4k + (+ 6)$ $= 4k^2 + 4k + 7$ $=4k^2+4k+4+3$ $= 4(k^2+k+i)+3$ which is not divisible by 4 ... a contradiction from the assumption that p2+6 is divisible by 4. ... If p is an integer, then p²+6 is not divisible by 4.

MATHEMATICS EXTENSION 2 – QUESTION 13SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** C) Alternative solution 1: $p^{2}+6 = 4M$ $p^{2} = 4M-6$ From (4 $p^{2} = 2(2M-3)$ $p^{2} \text{ is divisible by 2}$ 1/2 p is divisible by Z 4 Let p = 2k where $k \in \mathbb{Z}$ From (*) LHS = $(2k)^2 + 6$ $= 4k^2 + 6$ $= 4k^{2} + 4 + 2$ $= 4(k^2+1)+2$ which is not divisible by 4but $p^2 + 6 = 4M$.: a contradiction from the 1/2 assumption. : If p is an integer, p2+6 is not divisible by 4. NB: Many students got to 1/2 $p^2 = 2(2M-3)$ then took the square root to make p No marks were the subject, ie. p = = = = = (2 (2M-3) given for any subsequent norka then aimed to prove that p was not an integer (or irrational) and ended the proof there saying after this line. it was a contradiction. This proof is not correct because the negation of the original statement is that: if p is an integer then p2+6 is divisible by 4. It is already given that p is an integ er

MATHEMATICS EXTENSION 2 – QUESTION 3		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
c) Alternative Solution 2		
To prove the statement is true using contradiction, we assume that $p^2 + 6$ is divisible by 4 and look for a contradiction.		
So let $p^2 + 6 = 4k$, where k is an integer. We are to consider two different cases p odd or p even.		
Case 1: <i>if p</i> is even then $p = 2r$, where <i>r</i> is an integer. This means $p^2 + 6 = 4k$ becomes $(2r)^2 + 6 = 4k$ $4r^2 + 6 = 4k$ t $2r^2 + 3 = 2k$ But $2r^2 + 3$ is odd, and $2k$ is even, so there is a contradiction here. Case 2: <i>if p</i> is odd then p = 2s + 1, where <i>s</i> is an integer. This means $p^2 + 6$ becomes $(2s + 1)^2 + 6 = 4k$ $4s^2 + 4s + 1 + 6 = 4k$ $2(2s^2 + 2s) + 7 = 4k$ But $2(2s^2 + 2s) + 7 = 4k$ But $2(2s^2 + 2s) + 7$ is odd, and $4k$ is even, so there is also a contradiction here.		

MATHEMATICS EXTENSION 2 - QUESTIONSUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** d) i) P(-1,2,3) Q(-2,4,2) $PQ = \overline{OQ} - \overline{OP}$ $\frac{2}{3}$ -2 4 2 1/2 mark :. PQ is the direction vector $\frac{f}{2} = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix} + \pm \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$ 2 nark or (= ~ 01 $\begin{pmatrix} -2\\ 4 \end{pmatrix} + t$ 2 ί ii) The angle between the direction vectors is $\cos^{-1}\frac{1}{6}$. So if the direction vectors are: $\frac{d_i}{\sim} = \begin{pmatrix} -1 \\ 6 \\ 9 \end{pmatrix}$ and $\frac{d_2}{\sim} = \begin{pmatrix} -1 \\ 6 \\ 9 \end{pmatrix}$ (_(_2), then Writing that if
cos⁻¹ = 0
then to = cos0
Finding the dot produce
Find the magnitude
of d, and de $\cos \theta = \left(\begin{smallmatrix} -1 \\ b \\ 2 \end{smallmatrix} \right)$ $\frac{1}{6} = \frac{1+26-2}{7}$ 1 = (+26 - 2)For answer $\frac{2b=2}{b=1}$

MATHEMATICS EXTENSION 2 – QUESTION 14		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
a) $\alpha + \beta = -\frac{b}{a}$		
-(3-i)		
= 4+3i		
3-i x 4-3i		
$= \frac{1}{4+3i} \times \frac{1}{3i}$		
12-91-41-3		
= 16+9		
9-130		
= 25 $q 13:$		
$= \overline{25} - \overline{25} - \overline{9} - 9$		
$ \alpha + B = \sqrt{(\frac{9}{25})^2 + (\frac{13}{25})^2}$		
$= \sqrt{\frac{250}{225}}$		
5√10		
= 25		
$= \frac{5}{5} \text{or} \sqrt{\frac{2}{5}}$		
13/2)		
$arg(\alpha + \beta) = -tan^{-1}(\frac{725}{965})$ quod 4		
-1 (13)		
$= -\tan\left(\frac{1}{q}\right)$		

MATHEMATICS EXTENSION 2 – QUESTION 14 SUGGESTED SOLUTIONS MARKS **MARKER'S COMMENTS** b) (i) $t = tan \frac{\varphi}{2}$ $\frac{dt}{d\theta} = \frac{1}{2} \sec^2 \frac{\theta}{2}$ $\frac{sin^2\theta + \cos^2\theta = 1}{\sin^2\theta + \cos^2\theta = 1}$ $\frac{1}{d\theta}$ $\frac{1}{2} \left(\tan^2 \frac{\theta}{2} + 1 \right)$ $\frac{1}{2} \left(\frac{t^2 + 1}{2} \right)$ $\frac{dt}{d\theta} = \frac{t^2 + 1}{2}$ correct derivative (1)Correctly showing $\frac{d\Phi}{dt} = \frac{2}{1+t^2}$ \bigcirc $\therefore \frac{d\theta}{dt} = \frac{\lambda}{1+t^2}$ (ii) $\int_{0}^{\frac{T}{2}} \frac{3}{8\cos\theta + 10} \frac{d\theta}{dt} = \frac{2}{1+t^{2}} \frac{\theta - \frac{T}{2} \rightarrow t = \tan \frac{F_{4}}{4}}{\theta = 0 \rightarrow t = \tan \theta}$ (index) mark correct integral in terms of t. $= 3 \int_{-1}^{1} \frac{1}{4(1-t^{2})+5(1+t^{2})} dt$ $= 3 \int_{-\infty}^{1} \frac{1}{9+t^2} dt$ $= 3\left[\frac{1}{3}\tan^{-1}\left(\frac{t}{3}\right)\right]$ $\frac{1}{z} \left[\frac{1}{z} - \frac{1}{z} \right]$ = tan 1 3 - tan 10 = ton $\frac{1}{3}$ (1)mark Correct answer. ('2 mark if not = 0.322 evaluated)

MATHEMATICS EXTENSION 2 – QUESTION 14		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
c) (i)		
$\int_{a} = \begin{bmatrix} 3+\lambda \\ -2-\lambda \\ 1-\lambda \end{bmatrix}$		
Where does the sphere intersect L		
$\therefore x = 3 + \lambda \qquad (x - 3)^{2} + (y + 2)^{2} + (z - 4)^{2} = 1$	8	
$y = -2 - \lambda$ (SUB IN		
$z = -\lambda $		
$(3+\lambda-3)^{2}+(-2-\lambda+2)^{2}+(1-\lambda-4)^{2}=18$		
$\lambda^{2} + \lambda^{2} + (-3 - \lambda)^{2} = 18$		Correctly using
$\lambda^{2} + 9 + 6\lambda + \lambda^{2} = 18$		equations to solve
$3\lambda^2 + 6\lambda - 9 = \infty$		for a.
$\lambda^2 + 2\lambda - 3 = 0$,
$(\lambda + 3)(\lambda - 1) = 0$		
$\therefore \lambda = -3 \text{ or } \lambda = 1$		
Let A be the point for when $\lambda = -3$		
$ \begin{array}{c} (3-3) \\ (-2+3) \\ 1+3 \end{array} = \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix} $		
Let B be the point for when $\lambda = 1$		Correctly Finding
(3+1) (4)		A and B.
$\begin{pmatrix} -2-1 \\ 1-1 \end{pmatrix} = \begin{pmatrix} -3 \\ 0 \end{pmatrix}$		
So the line intersects the sphere at		
R(0,1,4) and B(4,-3,0)		Correct centre
Centre $\begin{pmatrix} 0+4 & 1-3 & 4+0 \\ -2 & -3 & -3 \end{pmatrix}$		
$(\lambda - 1 2)$		
$d_{1} = \sqrt{(4-0)^{2} + (-3-1)^{2} + (0-4)^{2}}$		^ <i>t</i>
$= \sqrt{16 + 16 + 16}$		

MATHEMATICS EXTENSION 2 – QUESTION 14		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
d, = 4/3 .: r= 2/3		
: Equation of the sphere with diameter AB		
$\frac{15}{(x-2)^{2}+(y+1)^{2}+(z-2)^{2}=(2\sqrt{3})^{2}}$	()	Correct radius and
$(x-2)^{2} + (y+1)^{2} + (z-2)^{2} = 12$		equation

MATHEMATICS EXTENSION 2 – QUESTION 14		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
d) step1 - Base Case - Prove true for n=1		
$LHS = \mathcal{N}^{\frac{1}{2}} \qquad \mathcal{R}HS = 2^{n-1}$		
$= 1$ $= 2^{-1}$		
= 1 = 2°		
= 1	(1/2)	Correctly showing
. LHS ZRHS		the base case
True for n=1		
Step2 - Inductive hypothesis - Assume true for n=k		Correctly states the
$\dot{k} = k^{\prime} \ge 2^{k-1} \qquad k \in \mathbb{Z}^{d}$	1/2	assumption
Step 3 - Inductive step - Prove true for n=k+1		
in Prove $k!(k+1) \ge 2^{k+1}$		
$(k+1)! \geq 2^k$	(×2)	Correctly stating what
		is to be proved.
Consider (k+1)! - 2 Note 10-4 = 6		
$= k!(k+1) - 2^{k} \ge 8 - 4 = 4$		
$2 2^{k-1}(k+1) - 2^k$ By the assumption.	(1/2)	Correctly uses
$= 2^{ \mathbf{k}-1 } (\mathbf{k}+ -2)$		the assumption in
$= 2^{k-1}(k-1)$		the proof.
≥ 0 since $k \in \mathbb{Z}^t$ and $2^{k-1} \geq 0$ for all k	\bigcap	Correct setting out
$(k+1)! - 2^{k} \ge 0$		of proof with
$(k+1)! \ge 2^k$		(on c) ution
: true for n = k+1 if true for n=k		
step 4 .: By the principle of mathematical		
Induction it is true for all nezt		

MATHEMATICS EXTENSION 2 – QUESTION 14		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
(OR) Step 3		
$\frac{1}{p_{rove}} \qquad (p+1)! > 2^{k}$		
LHS = (R+1)! $R! = 2$		
= k!(k+1) 1D ≥ 8		
$2^{k-1}(k+1) = 10 \times 2 \ge 8$		
$= k 2^{k-1} + 2^{k-1}$ 0%	† .	
$2^{+}+2^{-} \rightarrow 2^{-} (1+1) \text{ since}$	rez∴r	(>)
$= 2 \cdot 2^{-1} = 2^{-1} \cdot 2$		
=2 $=2$		
(k+1); = d		

MATHEMATICS EXTENSION 2 – QUESTION 15		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
a) Step (- Base case - Prove true for n=1		
$\frac{T}{T} = 3(2^n) + 1$		
$n=1$ $T_{1}=3(2')+1$		
= 7		Correctly proves
. True for n=1		base case.
Step 2 - Assume true for n=k		
$\frac{1}{k} = 3(2^k) + 1$	(1/2)	Correct assumption
Step3 - Prove true for n=k+1		
ie Prove $T = 3(2^{k+1}) + 1$ given		
$T_{k+1} = \partial T_k - 1$		
LHS = T k+1		Correct set out
$= 2T_{e} - 1$		of proof
$= 2 \left[3(2^{k}) + 1 \right] - 1$		
$= 2 \times 3(2^{k}) + 2 - 1$	(1/2)	Correct use of
$= 3(2^{k+1}) + 1$		ossumption within
= RHS		proof.
True for n=k+1 if true for n=k		
Step 4		
all positive integer n.		

MATHEMATICS EXTENSION 2 – QUESTION 15		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
b) v o		
a)		
$\vec{n}_{1} + \vec{n}_{2} = \vec{o}_{2}$ $ \vec{n}_{1} - \vec{n}_{2} - \vec{n}_{3} $		
A THU DO		
$\overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{q}$		
c = c = 3A	(1)	Some correct progress
To get \overrightarrow{AB} we rotate vector \overrightarrow{Ac} onlicitod wise by $\frac{\pi}{4}$		
and reduce it by a factor of $\frac{1}{\sqrt{2}}$ since $AC = \sqrt{2}AB$		
$\therefore \overrightarrow{AB} = \frac{1}{\sqrt{2}} \overrightarrow{AC} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \qquad AB = \frac{1}{\sqrt{2}} \overrightarrow{AC}$		Correct rotation and
$b-a = \frac{1}{2}(s-a)(\frac{1}{2}+\frac{1}{2}i)$		reduction
$b - a = (c - a)(\frac{1}{2} + \frac{1}{2}c)$		
2(b-g) = (g-g)(1+i)		
2b-2g= c+si -g-gi		Correct process
2b - g + gi = c(1+i)		to show result.
$c = 2b - q + qi \times (1 - i)$		
$1+i \times (1-i)$		
$c = \frac{(2b-a)(1-c)}{2b-a}$		
2h - 2bi - a + qi + qi + qi		
16 (1-i) + 2g i		
c = b(1-i) + gi		

MATHEMATICS EXTENSION 2 – QUESTION			
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS	
METH00 2			
To get AC rotrate AB clockwise by # and enlarge			
by a factor of J2			
$\overrightarrow{AC} = \sqrt{2} \overrightarrow{AB} \left(\cos\left(-\frac{\pi}{4}\right) + \sin\left(-\frac{\pi}{4}\right) \right)$			
$= AB \times \sqrt{2} \left(\cos \frac{\pi}{4} - \sin \frac{\pi}{4} \right)$			
$AC = AS \times \sqrt{2} \left(\sqrt{2} - \sqrt{2} \right)^{2}$			
$\frac{c-q}{v} = \left(\frac{b-q}{v}\right) \left(1-b\right)$			
c = b - bv - o + ov + o			
$c = b(1-b) + a^{b}$			
$\vec{AB} \cdot \vec{Ac} = \vec{AB} \vec{Ac} \cos \frac{\pi}{4}$			
$(b-a) \cdot (c-g) = AB \times AC \times (\frac{1}{2} + \frac{1}{2}i)$			
$= AB \times \sqrt{2} AB \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right)$			
$b \cdot c - b \cdot g - a \cdot c + a \cdot g = AB^2 (1+i)$			

MATHEMATICS EXTENSION 2 – QUESTION 15			
SUGGESTED SOLUTIO	ONS	MARKS	MARKER'S COMMENTS
c) $\int_{-\infty}^{3} \frac{x-2}{x-2} dx$	$x = 2 + 2 \cos^2 \theta$	(OR) $x = 2 + 2 \times 2$	ξ (ωs20+1)
$\int_{2} \sqrt{\frac{4-x}{4-x}}$	$\frac{\partial x}{\partial \theta} = -4(\cos \theta) \sin \theta$	x = 2 + c	o\$20° +1
The acost of the second do	$x = 3$, $3 = 2 + 2\cos^2 \theta$	$x = 3 + \alpha$	s 20 ⁻
$= \int_{\frac{\pi}{2}} \sqrt{\frac{4-2-2\cos^2\theta}{4-2-2\cos^2\theta}}$	$\cos^2\theta = \frac{1}{2}$	$\frac{\partial z}{\partial \sigma} = -2$	sindo x g cino caso
The zcos20 x Hososino do	$\cos \sigma = \sqrt{\frac{1}{2}}$	= -a =-4	Sind COSO
$= \int \frac{\mathcal{I}(1 - \cos^2 \sigma)}{\pi_{f}}$	$\frac{\theta = \overline{y}}{1 + 2\cos^2 \theta}$		Correct bounds
$-4\cos\theta$ sing do	$\frac{1}{2} \frac{1}{2} \frac{1}$		
$= \sqrt{\frac{\cos^2 \sigma}{\sin^2 \sigma}} \times \frac{1}{\sin^2 \sigma}$	$\theta = \frac{\pi}{2}$		Correct set up of
с _{ту2}	~		integral.
$= \int_{-\infty}^{\infty} \frac{\cos \theta}{1 + \cos \theta} - 4 \cos \theta \sin \theta d\theta$			-
TT SITO	2		
$-4 \cos^2 \theta d\theta$	$\cos \theta = 1$	\bigcirc	C
$=$ $\int_{\frac{1}{2}}$ $\cos^2\theta =$	2(00520 +1)		Correct simplification
$= 4 \left(\cos 2\theta + 1 \right) \partial \theta$			of mogran
$= 2 \begin{bmatrix} \frac{1}{2} \sin 2\theta + \theta \\ \pi \end{bmatrix}$			Correctly integrates
$\frac{\pi}{1+\sin\frac{\pi}{2}} + \frac{\pi}{2} + \frac{\pi}{$	표)]		anal gives correct
$= 2 \left[\frac{2}{2} \sin^{11} + \frac{2}{2} - \left(\frac{2}{2} \right)^{2} \right]$	• • • • •		solution.
$\frac{\pi}{2} = \frac{1}{2} \times 1 = \frac{\pi}{2}$			
			Some halt marks
- T - I - T			awarded for minor
2			ET IOTJ
$=\frac{\pi}{2}-1$			

MATHEMATICS EXTENSION 2 – QUESTION 15		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
d) $\underline{I}_n = \int_{-\infty}^{\overline{U}} x^n \cos x dx \qquad u = x^n v' = \cos x$		
$u'=nx^{n-1}$ $v=sinx$		Correct use of
$= \left[x^{n} \operatorname{Sinc} \right]^{\frac{n}{2}} - h \left[x^{n-1} \operatorname{Sinz} dx \right] \qquad \qquad u = x^{n-1} v' = x^{n-1} $	sint- losx	Integration by parts
$= \left(\frac{\pi}{2}\right)^{n} \sin \frac{\pi}{2} - 0 - n \left[\left[x^{n-1} \cos x \right]^{\frac{N}{2}} + \left(s - x \right)^{\frac{N-2}{2}} \cos x \right] dx$		applied
$\mathbf{J}_{n-2} = \int_{0}^{n/2} \mathbf{x}^{n}$	2 COJX dr	
$= \left(\frac{\pi}{2}\right)^{n} - n \left\{ \left(\frac{\pi}{2}\right)^{n-1} \cos \frac{\pi}{2} - 0 \right\} + (n-1) \frac{T}{n-2} \right\}$		Correct second use
$\left(\frac{\pi}{2}\right)^{n} - n \left(\frac{p-q}{2}\right) - n \left(\frac{p-1}{2}\right)T$		of integration by
$= (2)^{-1} (1)^{-1}$		part applied.
$I_{n} = \begin{pmatrix} n \\ 2 \end{pmatrix}^{n} - n(n-1) J_{n-2} \qquad n \ge 2$		Correctly proves
$T (T)^4 (u, v) T$		In.
$\frac{(ii)}{4} = \frac{1}{4} = \frac{1}{2} - \frac{1}{4} + \frac{1}{2} + \frac{1}{2}$		
$= \left(\frac{i}{2}\right)^{\prime} - l\partial \left[\left(\frac{i}{2}\right)^{\prime} - 2\left(\partial^{-1}\right)^{\prime} \right]$		Correct substitution
$= \left(\frac{\pi}{2}\right)^{4} - 12\left[\left(\frac{\pi}{2}\right)^{2} - 2x\int^{2} x^{2}\cos x dx\right]$		of n=4 into In
$= \left(\frac{\pi}{2}\right)^{\mu} - 12 \left[\left(\frac{\pi}{2}\right)^{2} - 2x \left[\operatorname{stax}\right]_{0}^{\frac{\pi}{2}}\right]$		
$= \left(\frac{\pi}{2}\right)^{4} - 12 \left[\left(\frac{\pi}{2}\right)^{2} - 2 \times 1 \right]$		Convincingly proves
$-(\frac{\pi}{2})^4 - 12(\frac{\pi}{2})^2 + 24$		result, including
		when n=0.

MATHEMATICS EXTENSION 2 – QUESTION \int_{0}^{1}		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
From dot product (*)		
$-8x - 6y + 100 = 10 \times 10 \times cos \pm$		
$-8x - 6y + 100 = 100 \times \frac{1}{2}$		
-8x-6y+100=50	4	
+ 5y = 25 (1) 12	
Also $\vec{Q0} = \begin{pmatrix} -6 \\ -8 \\ 0 \end{pmatrix}$ and $\vec{QR} = \begin{pmatrix} x-6 \\ y-8 \\ z \end{pmatrix}$		
Dot product Q0 · QR = Q0 QR cos $\frac{\pi}{3}$ (* **)		
Now $dd \cdot dR = -6(x-6) + -8(y-6)$		
= -6x + 56 - 8y + 64 = -(x - 8y + 10)	4	
and $ QO = \sqrt{(-6)^2 + (-8)^2}$		
and $ \overline{\alpha R} = 10$ given sub (x x)		
- 6x - 8y +100 = 10×10× 3		
-6x - 8y + 100 = 50		
-6x - 8y = -50		
3n + 4y = 25	12	
$(1 \times 4, (2) \times 5)$		
$9_{1} + 12_{1} = 75$		
(3) - (4) 7x = 25		
$x = \frac{25}{5} \text{ sub in (1)}$		
(25)		
$f(\overline{\gamma}) + Sy = 25$		
$\frac{100}{7} + 3y = 25$		

MATHEMATICS EXTENSION 2 – QUESTION			
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS	
(00 + 21) = (75)			
21y = 75			
$y = \frac{75}{9}$			
$y = \frac{25}{7}$			
Now $ QR = (1-6)^2 + (y-8)^2 + Z^2$			
sub $x = y = \frac{25}{7}$ and $\left[\frac{1}{27} \right] = (0)$			
$10 = \sqrt{\left(\frac{25}{7} - 6\right)^2 + \left(\frac{25}{7} - 8\right)^2 + 2^2}$			
$10 = \sqrt{\frac{289}{49} + \frac{961}{49} + 2^2}$			
$=\sqrt{\frac{1250}{49}+2^2}$			
Squaring both sides			
$loo = \frac{(250)}{49} + 2^2$			
$z^2 = \frac{3(50)}{49}$			
$Z = \sqrt{3650} as z > 0$			
$= \frac{2\sqrt{146}}{7}$			
$\therefore R is \left(\frac{25}{7}, \frac{25}{7}, \frac{5\sqrt{146}}{7}\right)$			
Note: Ma al da la life de la			
the find there are it does a that they	necded t	prod rK + QR	
They guild their magnitudes and they equated	Them, t	naing that x = y.	
for them to use the dat and will the		and in these was	
both the values to find -		und y men use	
See Alternative solution	below		

MATHEMATICS EXTENSION 2 – QUESTION 1/2			
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS	
Alternative Solution 16 b)			
$\overrightarrow{PR} = \begin{pmatrix} \chi - \vartheta \\ \psi - \zeta \end{pmatrix} \qquad \overrightarrow{QR} = \langle \chi - \zeta \rangle$			
$\left \frac{z-o}{y-8} \right $			
$= \begin{pmatrix} 2 - 8 \\ 9 - 6 \end{pmatrix} \qquad (2)$			
$\frac{1}{2}$			
Now $ \vec{PR} = \sqrt{(x-8)^2 + (y-6)^2 + z^2}$			
$(0 = \sqrt{(x-8)^2 + (y-6)^2 + 2^2}$			
$100 = (x-8)^2 + (y-6)^2 + 2(i)$			
$A = \sqrt{(2 + 1)^2}$			
$1 - 1 (x - c) + (y - s) + c^{-1}$			
$(0 = \sqrt{(1-6)^2 + (1-8)^2 + 2^2}$			
$100 = (x-6)^{2} + (y-8)^{2} + z^{2} - 2$			
(1) = (2)			
$(x-8)^{2}+(y-6)^{2}+z^{2}=(x-6)^{2}+(y-8)^{2}+z^{2}$			
$x^2 - 16x + 64 + y^2 - 12y + 36 = x^2 - 12x + 36 + y^2 - 16y + 64$			
$-16\pi - 12\mu = -12\pi - 16\mu$			
-4x = -4y			
x=y	(
$Now QD = \left(-\frac{8}{8}\right)$			

MATHEMATICS EXTENSION 2 – QUESTION 1		
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
Using the dot product		
$\vec{Q} \vec{R} \cdot \vec{Q} \vec{Q} = \vec{Q} \vec{R} \cdot \vec{Q} \vec{Q} \cos T_{\mu}$		
$-6(x-6)-8(y-8)=(0\times 10\times \frac{1}{2})$	1/2	
-6x+36-8y+64=50		
-6x - 8y = -50		
$6x + \delta y = 50$		
3x + 4y = 25		
but X=y		
0		
12 3x + 4x = 25		
7x = 25		
$\chi = 25$		
7	22	
and $y = \frac{c_3}{7}$	\mathbf{b}	
For z, sub x q y in ()		
$100 = \left(\frac{25}{7} - 8\right)^2 + \left(\frac{25}{7} - 6\right)^2 + 2^2$		
$100 = \frac{961}{49} + \frac{289}{49} + 2^2$		
$z^2 = 3650$		
49		
$Z = \pm \sqrt{3650}$		
649		
$\therefore Z = \sqrt{\frac{3650}{4}}$		
= 5 (1+6		
\therefore K is $(\frac{4}{7}, \frac{2}{7}, \frac{3}{7})$		

MATHEMATICS EXTENSION 2 – QUESTION (
SUGGESTED SOLUTIONS	MARKS	MARKER'S COMMENTS
C) Given 2+4 > VX4		This part was
		not well done
Let $x \rightarrow a, y \rightarrow b$		
-: a+b > Jab		
$\frac{1}{12} \left(\frac{1}{12} + \frac{1}{12} \right) = \frac{1}{12} \left(\frac{1}{12} + \frac{1}{12} \right)$		
$\sum_{n=1}^{\infty} \frac{1}{2} $		
B adding (D (2) and (2) in set		
$a_{\pm}b_{\pm}a_{\pm}c_{\pm}+b_{\pm}c_{\pm}>2$ $a_{\pm}b_{\pm}+2$ $a_{\pm}c_{\pm}+2$ $b_{\pm}c_{\pm}$		
$2a + 2b + 2c \ge 2(Jab + Jac + Jbc)$		
2(a+b+c) > 2(ab+bac+bc)		
$a+b+c \ge lab + lac + lbc - (+)$	1	
Now consider the expansion:		
(1a + Jb + Jc) = a + b + c + 2 Jab + 2 Jac + 1bc		
Add 2 lab 12 lac 12 lin b by the adde		
of (4) we get		
$a + b + c + 2 \sqrt{ab} + 2 \sqrt{ac} + 2 \sqrt{bc} + 2 \sqrt{ab} + 2 $	bc 1	
.: Substructing LHS of (5) we get		
$(\sqrt{a} + \sqrt{b} + \sqrt{c})^2 > 3\sqrt{ab} + 3\sqrt{ac} + 3\sqrt{bc}$		
$(10 + 16 + 10)^2 > 3(106 + 10c + 16c)$		(3) marks
> Marks: Full, clear and well structured		
2 Marks - Adding all Appland in the		
and duind any Artigers inequalities		
- considering the expansion		
$(\sqrt{a} + \sqrt{b} + \sqrt{c})^2 = a + b + c + 2\sqrt{ab} + 2\sqrt{ac} + 2\sqrt{bc}$		
[Mark: Adding all AM [GM in equalities & dividi	ng both	solec by 2.

MATHEMATICS EXTENSION 2 - QUESTION / 6SUGGESTED SOLUTIONS **MARKER'S COMMENTS** MARKS ii) From (i) $(\sqrt{a} + \sqrt{b} + \sqrt{c})^2 > 3(\sqrt{ab} + \sqrt{bc}) - -- @$ Let $a = m^6 p^6$, $b = m^6 r^6$, $c = p^6 r^6$ sub $(a \in \mathcal{K})$ After giving the subst. for a, b and c, $\left(\sqrt{m^{b}p^{b}} + \sqrt{m^{b}r^{b}} + \sqrt{p^{b}r^{b}}\right)^{2} \ge 3\left(\sqrt{m^{b}p^{b}m^{b}r^{b}} + \sqrt{m^{b}p^{b}p^{b}r^{b}}\right)$ many students dia + (m6p6r6-6 not include the Ltis $(m^{3}p^{3} + m^{3}r^{3} + p^{3}r^{3})^{2} \ge 3(\sqrt{m^{2}p^{6}r^{4}} + \sqrt{m^{6}p^{2}r^{6}} + \sqrt{m^{6}p^{6}r^{4}})^{2}$ of this line in their proof and went $(m^{3}p^{3} + m^{3}r^{3} + p^{3}r^{3})^{2} \ge 3(m^{6}p^{3}r^{3} + m^{3}p^{6}r^{3} + m^{3}p^{7}r^{6})$ straight to the third line. $> m^6 p^3 r^3 + m^3 p^6 r^3 + m^3 p^6$ $\binom{33}{mp+mr+pr}^{3}^{2} \ge \frac{33}{mpr}^{3}(\frac{3}{m+p+r}^{3})^{2}$ Note: This is a proof question and requires you to show <u>ALL</u> steps. Please attempt more proof/show type questions and practise showing all steps in your solutions.